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Abstract

Learning to model and predict how humans interact
with objects while performing an action is challenging,
and most of the existing video prediction models are in-
effective in modeling complicated human-object interac-
tions. Our work builds on hierarchical video prediction
models, which disentangle the video generation process into
two stages: predicting a high-level representation, such as
pose sequence, and then learning a pose-to-pixels transla-
tion model for pixel generation. An action sequence for a
human-object interaction task is typically very complicated,
involving the evolution of pose, person’s appearance, object
locations, and object appearances over time. To this end,
we propose a Hierarchical Video Prediction model using
Relational Layouts. In the first stage, we learn to predict a
sequence of layouts. A layout is a high-level representation
of the video containing both pose and objects’ information
for every frame. The layout sequence is learned by mod-
eling the relationships between the pose and objects using
relational reasoning and recurrent neural networks. The
layout sequence acts as a strong structure prior to the sec-
ond stage that learns to map the layouts into pixel space.
Experimental evaluation of our method on two datasets,
UMD-HOI and Bimanual, shows significant improvements
in standard video evaluation metrics such as LPIPS, PSNR,
and SSIM. We also perform a detailed qualitative analysis
of our model to demonstrate various generalizations.

1. Introduction

Video prediction is a challenging task of predicting fu-
ture frames conditioned on one or more past frames. Videos
in the real world are extremely complex. An everyday ac-
tion, such as drinking a coffee, results from complicated
interactions among various objects. For example, first, the
person might reach the coffee pot and pour coffee into their
cup. Next, they might start drinking from the cup while
browsing their cell phone. Observe that this particular ac-
tion involves interactions among various objects such as a

coffee pot, cup, and cell phone. Each of the objects has its
relative motion with respect to other objects and the person
performing the action. While it is effortless for human be-
ings to imagine such events, existing computer vision mod-
els often fail at these tasks.

Existing video prediction methods broadly fall into two
categories: 1) models that directly predict the video in the
pixel space, and 2) models that use hierarchical prediction.
Hierarchical prediction methods are a preferred over di-
rectly predicting the video in pixel space as they learn a
good intermediate representation which is then mapped to
pixel space. Disentangling the prediction into simpler steps
helps the models focus on smaller tasks and, hence, learn
an improved frame prediction model. A natural choice of
intermediate representation for videos is optical flow [1].
Similarly, for videos involving human actions, human-pose
is typically used as an intermediate representation. Villegas
et al. [2] and Walker et al. [3] have disentangled the video
prediction by first predicting the pose sequence and then
mapping the pose sequence to pixel space.

While pose is a great choice for videos involving human
actions, pose alone is not sufficient to capture various dy-
namics in a Human-Object interaction sequence. For com-
plex actions, such as human-object interactions where mul-
tiple objects evolve over time, pose alone does not fully cap-
ture the complex scene dynamics. Since the pose does not
contain any information about the objects, the models fail
to capture the object’s motion and appearance faithfully. To
mitigate this issue, we propose to learn a layout sequence
as an intermediate representation. A layout sequence is a
combination of pose and object sequences that not only cap-
tures the person’s pose while performing an action, but also
explicitly learns the locations of various objects at differ-
ent times while the action is being performed. The naive
way of learning these pose and object sequences indepen-
dently is also not sufficient since the spatio-temporal evolu-
tion of an object is dependent on how the pose is evolving
and vice versa. Hence, we propose a Human-Object Rela-
tional Network (HORN) to model these complex interac-
tions among objects and poses.

Our key contributions for video prediction for human-



object interactions are: 1) we model the full-body mo-
tion for humans, 2) our intermediate representation cap-
tures both pose and object locations, and thus learns a better
structure prior for the frame prediction stage. 3) our model
can generate videos for novel interactions, e.g., it can gen-
eralize well to new people performing actions that were not
part of the training set.

2. Related Work
Our work is closely related to video prediction, human-

object interaction, and relational reasoning. We briefly re-
view some related research in these areas.

Video Prediction. Early works in video prediction have fo-
cused on directly predicting the sequence of frames in pixel
space [4–11]. Our work is different from these since we
do not predict the frames in the pixel space directly. In-
stead, we use a hierarchical model that first generates a
structure that acts as a prior to the next stage of generat-
ing pixels. Two-stage methods have been proposed to im-
prove the video prediction models [2, 3, 12–16]. HVP [2]
learns to predict a sequence of poses in the first stage and
maps it to pixel space using a visual analogy in the second
stage. For complicated videos such as human-object inter-
action, there is more than one object, and the person’s pose
evolving over time. Therefore, pose alone is not sufficient
to capture good structure prior. We propose to learn a layout
sequence, which is a combination of both pose and object
sequences.

Human-Object Interaction. Modeling human-object in-
teractions in images has been an active research topic in
computer vision [17–22]. HoI-GAN [23] proposed a gen-
erative model using 3D convolutions for synthesizing hu-
man interactions with objects in videos. Similar to this,
our work also aims to synthesize human-object interaction
videos. However, it is different in the following aspects 1)
we propose a two-stage method instead of synthesizing im-
ages directly in the pixel space. 2) We model interactions
with more than one object, whereas HoI-GAN assumes in-
teractions with only one object. 3) While HoI-GAN models
egocentric videos predominantly involving hand motions,
we model humans’ full-body motion.

Relational Reasoning. Relational reasoning has been
widely used to model the interactions among various en-
tities for visual understanding tasks such as : object inter-
actions in videos [24], object relationships in images [25],
action prediction [26, 27], human-object interactions [28–
30] human trajectory prediction [31], physical dynamics of
object [32, 33] etc. To the best of our knowledge, this work
is the first to use relational reasoning in the context of video
prediction for real-world videos. Since our task involves
modeling human-object interactions, which in-turn involves
reasoning across entities such as humans and objects and

objects and objects, relational reasoning is a natural choice
for our first stage of layout generation.

3. Human-Object Interactions using Rela-
tional Layouts

Let x0 be the first frame of a video sequence of a person
performing an action a. Let b0 = {b00, b10, . . . , bn0} be the
set of objects in the first frame of the video. Our task is to
predict how a person would perform action a by interacting
with objects b0. Formally, we would like to learn a mapping
functionX1:T = G(x0, a, b0) that takes the first frame, also
called as guidance frame, x0, action a and a set of objects
b0 in the guidance frame as inputs and learns to predict the
subsequent frames X1:T = [x1, x2, . . . , xT ].

We disentangle this process of generating the videoX1:T

conditioned on the guidance frame x0 into two subtasks. In
the first stage, we learn a coarser representation of the video,
which is a sequence of layouts L1:T . The layout sequence is
a sequence of object locations and keypoints of the person
performing the target action. In the second stage, we learn
a video generator that takes the sequence of layouts and the
guidance frame as inputs and predicts the video in the pixel
space.

3.1. Stage 1 : Relational Layout generation

A layout sequence L0:T is a combination of pose and
object sequences. Formally, let P0:T = [p0, p1, . . . , pT ] be
the sequence of poses, let Bk0:T = [bk0 , b

k
1 , . . . , b

k
T ] where

k = 1, 2, ..n be the sequence of k-th object. We assume that
the number of objects, n remains constant through out the
sequence. L0:T = [l0, l1, . . . , lT ] is a sequence of layouts
where lt = (pt, b

1
t , b

2
t , . . . , b

n
t ). At each time step t layout

lt is a tuple of pose and objects.
Our Relational Layout Generator consists of three main

building blocks: 1) a Human-Object sequence prediction
model that learns to predict the sequence of poses and se-
quence of objects corresponding to the target action, 2) a
Human-Object relational model that learns to reason about
relations among various objects and poses and 3) the pose
and object decoders that generate the final sequence of lay-
outs.

Human-object sequence prediction. The pose and object
features for every time step are learned recursively using re-
current networks. More than one object evolves over time in
an action, and hence we model each object’s sequence sep-
arately using an RNN. Since all the object sequences differ
only in terms of the object category, we share the recur-
rent network parameters for all the object sequences. The
pose and object features for the time step t+1 are obtained
by learning pose and object recurrent networks RNNθp and



Figure 1: An overview of our approach. (a) Context encoder for encoding the first frame, action, and object information. (b)
Layout generator for predicting the layout sequence using pose and object RNNs and relational network. (c) Video generator
for mapping layouts to pixels.

RNNθo as follows:

vp = RNNθp(cp, pt), vko = RNNθo(co, b
k
t ) (1)

where pt is the pose and bkt is the location of the k-th ob-
ject at time step t and θp, θo are the parameters of the
RNNs for pose and object respectively. cp and cko are con-
text features for pose and object RNNs that remain constant
throughout the sequence prediction for every step. cp and
cko are computed by learning the context mapping functions
cp = fθp(x0, a) and cko = fθo(x0, a, y

k) where yk is the ob-
ject class for the k-th object.
Human-object relational reasoning. In a typical Human-
Object interaction sequence, the pose and object sequences
are highly correlated. Since the sequence prediction step
learns a sequence of pose and object features independently,
it cannot reason about the relations among them. There-
fore to incorporate relational reasoning among various ob-
jects and human pose, we propose a Human-Object Rela-
tional Network (HORN). HORN takes the pose and object
features from the sequence prediction step and enhances
them by learning the complicated Human-Object relation-
ships. HORN learns two kinds of Human-Object relations:
1) Object-Object and 2) Human-Object.

Given a set of object features O = {v1o , v2o , . . . , vno }
we define pairwise relations between the object feautres as
gθ(v

i
o, v

j
o) where gθ(., .) is a feature extraction function pa-

rameterized by θ and vio, v
j
o are the object features, which

are the outputs of the sequence prediction step. The pair-
wise relational features are further aggregrated to obtain ob-
ject relational features (ORF) for every object as:

ORF(vio) = gφ(gθ(v
i
o, v

j
o) : v

j
o ∈ O) (2)

gφ is the aggregation function parameterized by φ that
learns to aggregate all pairs for object features.

Object relational features are further encouraged to learn
Human-Object Relational Features (HORF) by learning
their relationships with pose features. To do this, we
learn hθ(vp,ORF(vio)) where hθ(vp, .) is a feature extrac-
tion function parameterized by θ, vp is the pose feature and
ORF(vio) is the object relational feature of the i-th object.
Similarly, the pose feature vp is encouraged to learn the
relationships with the objects. This is done by learning a
function hφ(vp,ORF(vio)) where hφ(vp, .) is a feature ex-
traction function parameterized by φ. Therefore,

HORF(vio) = hθ(vp,ORF(vio))),

HORF(vp) = hφ(vp,ORF(vio))).
(3)

where vio ∈ O
Pose and object decoders. The HORN outputs are en-
hanced pose and object feature vectors obtained by learn-
ing the relationships among them. These enhanced pose



and object feature vectors are passed through their respec-
tive pose and object decodersDp andDo to predict the pose
p̂t+1 and objects b̂kt+1 for the next step. This process is re-
cursively continued to generate the layout sequence L̂1:N .
The overall layout generator (GL) is learned by minimizing
the layout loss LLayout = Lpose + Lobject as:

Lpose = BCE(p1:T , p̂1:T ), Lobject =
∑

k=1,..,n

MSE(bk1:T , b̂
k
1:T )

(4)

3.2. Stage 2 : Layout sequence to video generation

Once the layout sequence is predicted, the next step is to
learn to map them to video. The layout sequence acts as a
structure prior that helps the generator to synthesize tempo-
rally coherent videos with high fidelity. The video generator
needs to learn to generate frames with the same context as
the guidance frame while respecting the input layout. While
the guidance frame provides contextual information such as
background, the appearance of the objects in place, and the
person’s appearance performing the action, the layout of-
fers information about the pose and location of objects. The
video generator learns to extract this contextual informa-
tion from the guidance frame, propagates it throughout the
video, and maintains the pose and object locations.

The video generator model (Gv) is an encoder-decoder
style convolutional neural network that takes a layout as
input and generates a frame. To maintain temporal con-
sistency across the predicted frames, along with the current
layout,Gv takes the previous layout and the guidance frame
as inputs to generate the current frame. To generate the
frame at time step t, Gv takes lt, lt−1 and x0 as inputs.
The video generator is learned by minimizing the L1 loss
between the generated and ground truth video as follows:

x̂t = Gv(lt, lt−1, x0), Lpix =
∑

t=1,...,T

|x̂t − xt| (5)

Since the input to the video generator is just the first
frame, L1 loss alone is not sufficient to generate high fi-
delity videos. With L1 loss alone, the videos tend to be
blurry and not guaranteed to synthesize objects faithfully.
This problem gets aggravated when the objects are too small
with significant motion in very few frames. Hence, to fur-
ther improve the generated videos’ visual quality, we learn
the video generator by training it with feature loss and dis-
criminator loss functions. We use the same feature loss
(Lfeat) as proposed in HVP [2]. For improving the realism of
the generated videos, we propose three discriminators that
operate at various granularity levels: 1) an object discrim-
inator to enhance objects’ appearance, 2) a frame discrim-
inator to make frames look more realistic, and 3) a video
discriminator to improve the spatio-temporal quality of the
generated video in pixel space.

Conditional Object Discriminator. To obtain a perceptu-
ally good appearance for the objects, we train Gv against
an object discriminator. The generated video frames must
have the following two properties: 1) the objects’ appear-
ance in every frame needs to match with that of the guid-
ance frame, and 2) the objects must belong to the same class
as the guidance frame. Hence the conditional object dis-
criminatorDobj takes cropped objects from guidance frame,
cropped objects from generated (and real) frames, and the
corresponding object classes as inputs. Dobj is trained to
distinguish a fake triplet from a real triplet, and the genera-
tor Gv is encouraged to synthesize the objects that can fool
the discriminator. Gv and Dobj are trained by minimizing
the loss function:

Lobj = [logDobj(x
c
t ; y, x

c
0)] + [log(1−Dobj(x̂

c
t ; y, x

c
0))].

(6)
where xct is the cropped object from real video and x̂ct is the
cropped object from the predicted video at time t.

Conditional Frame Discriminator. To ensure that the
video generator accurately learns the person’s appearance,
we train it against a frame discriminator Df . Df takes the
guidance frame and each of the subsequent frames as inputs
and learns to distinguish it from a fake pair. The generator is
trained to synthesize frames that fool the discriminator and
hence learns to transfer the person’s appearance from the
guidance frame to the entire video. Gv and Df are trained
by minimizing the loss function:

Lframe = [logDf (xt;x0)] + [log(1−Df (x̂t;x0))]. (7)

Conditional Video Discriminator. To obtain temporally
coherent predicted videos, we train the video generator Gv
against a video discriminator Dv . Dv is also designed to
ensure that the generated frames are coherent with the input
layout. To do so, Dv takes the layout sequence and real
video as inputs and learns to distinguish with the fake pair.
Gv and Dv are trained by minimizing the loss function:

Lvideo = [logDv(X1:T , L1:T )] + [log(1−Dv(X̂1:T , L1:T ))].
(8)

3.3. Architecture and training details

Inputs. In our model, the guidance frame is a tensor of
size 128× 128× 3. The action vector is a one-hot em-
bedding of size 1× da and the object vectors are one-hot
embeddings of size 1× do where da and do are number
of action classes and object classes respectively. For the
pose sequence, pose at every time step is represented as a
2D map of Nkp keypoints. That is, pt is a tensor of size
128× 128×Nkp. For the object sequence of every object,
bkt is represented using object class and bounding box infor-
mation. bkt is a tensor of size 1× (do + 4) which is obtained



Table 1: Quantitative comparision of our method with base-
lines on Bimanual dataset. FID and I-DTW scores are lower
the better and mAP is higher the better.

Metric FID(↓) I-DTW(↓) mAP(↑)

MoCoGAN 181.65 14.97 7.83
HoI-GAN 214.67 13.29 8.77
HVP 69.92 11.32 57.52
HORN (ours) 35.82 10.52 59.04

by concatenating one-hot vector of the object class and the
bounding box, x, y, dx, dy.
Layout generator. We use convolutional encoders to en-
code frames and poses in the layout generator. The guid-
ance frame encoder Eg , the pose encoder Ep and the pose
decoder Dp are convolutional networks with 4× 4 convo-
lutions and stride 2. All convolutional layers are followed
by batch normalization and ReLU. For pose and object se-
quences, we use two layer LSTMs with hidden size of 128.
Note that all the object sequences share the same LSTM.
The HORN is implemented using a 2 layer MLP as men-
tioned in Palm et al. [34]
Video generator and discriminators. Video generator is
a Pix2PixHD [35] architecture with 2 local enhancers and
2 global blocks. The input to the generator is a tensor of
size 128× 128× 3 + 2 ∗ (Nkp + do). This is obtained by
concatenating the guidance frame, pose maps, and object
maps of the current and previous frames.

The frame discriminator and object discriminators are
2D convolutional networks, and the video discriminator is a
3D convolutional network with spectral normalization. For
the object discriminator, the objects are cropped and re-
sized to a fixed size of 32× 32. We train the Model using
Adam optimizer with a learning rate of 0.0002 and batch
size 24. The layout generation and pixel generation stages
are trained independently. Additional training details, such
as data augmentation and preprocessing, are provided in the
supplementary material. In all our experiments, the videos
are of length 17 such that given the first frame, the next 16
frames are predicted by the model.

4. Experiments

We present the qualitative and quantitative evaluation of
our approach on two datasets: 1) UMD-HOI [36] and 2) Bi-
manual [37]. Both these datasets contain the videos where
a performer approaches a set of objects and performs a task
such as drinking, speaking on a telephone, cooking with
bowls, etc. The main advantages of these datasets are: 1)
the performer is fully visible in the video, 2) the actions
performed are complex enough to involve full-body mo-
tion, and 3) An action may contain interaction with mul-
tiple objects. The UMD-HOI dataset has videos with sin-

gle object interactions mainly done with either right or left
hand. The Bimanual dataset has videos with more com-
plicated interactions with multiple objects involving both
hands. Therefore, these datasets are better suited to evaluate
various components in our method, such as the effectiveness
of pose sequences, object sequences, and their interactions.
UMD-HOI dataset. UMD-HOI dataset has a total of 64
videos with actions performed by ten subjects performing
six interactions with four objects. The dataset is divided into
train and test splits. The train split contains 50 videos, and
the test split contains 14 videos. To evaluate generalization
to new subjects, a random subject is held out of training.
The training and test videos are chosen randomly.
Bimanual dataset. The Bimanual dataset contains 540
videos with actions performed by six subjects. It has an
overall twelve objects and nine tasks. The tasks in this
dataset involve interactions with multiple objects over time.
For example, “cooking with bowls” action involves picking
up a whisk, mixing in the bowl, poring from another bowl,
etc. We selected 6 tasks and computed the tracklets for each
object in the video using two heuristics : 1) IoU and 2) sim-
ilarity score based on the color histogram. The dataset is
divided into training and testing splits. The training has 300
videos, and testing has 120. The data is split so that two ran-
dom actions performed by every subject are held out from
training and are included in the test set.

We compare our method with the following baselines :

• im2vid MoCoGAN [38]: MoCoGAN is a widely used
video prediction model that synthesizes videos from
random noise. We use an image to video prediction
version of the MoCoGAN as mentioned in [38] (sec-
tion 4.3) to compare our method. It is a stronger base-
line and closer to our approach. We modify it to take
the first frame and action as inputs to predict the video.

• im2vid HOI-GAN [23]: Like MoCoGAN, we modify
HOI-GAN to image to the video prediction model. For
that, we make two modifications to the original model:
1) We remove noise as the input, and 2) the generator
is trained with an additional L1 loss function.

4.1. Quantitave Analysis

Perceptual similarity measures. To quantitatively eval-
uate the effectiveness of our approach, we compare our
method with the baselines using the following standard
video evaluation metrics: 1) LPIPS [39], 2) SSIM [40] and
3) PSNR. The results are shown in Figure 2.

Our method significantly outperforms the baselines on
LPIPS and SSIM metrics for both the UMD-HoI and bi-
manual datasets. On the PSNR metric, our approach has
a similar performance as that of HoI-GAN. SSIM, PSNR,
and LPIPS metrics are limited in accurately measuring the
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Figure 2: Comparison of our method with baselines on UMD-HOI (a-c) and Bimanual (d-f) datasets

Figure 3: Limitations of pose only intermediate representation as compared to our layout representation.

performance of video prediction methods. These are frame-
based metrics that assume that the predicted video is aligned
temporally with the ground truth video, which is not valid.
For example, an actor could be performing an action slowly
in the predicted videos compared to the ground truth, which
leads to phase shift. Standard video evaluation metrics fail
to capture these properties. Therefore we further evaluate
our model on the bimanual dataset using three additional
metrics: 1) FID score [41], 2) Inception-DTW score, and
3) mAP of the objects detected by a FasterRCNN based de-
tector in the generated frames. FID score is more widely
accepted and a standard metric for quantitatively evaluat-
ing an image generation model’s effectiveness. We use this
metric to assess the quality of the generated frames. While
the FID score measures the overall frame quality, it doesn’t
consider the generated videos’ temporal quality. For esti-
mating this, we propose a pre-trained Inception network-
based Dynamic Time Warping metric (I-DTW). Like FID
and Inception scores [42], I-DTW relies on features from
a pre-trained inception network to measure the temporal
video quality. Since inception based metrics have been used
widely for evaluating the image generation models, we ex-
tend it to evaluate video generation models. To compute the
I-DTW score, we extract the normalized Inception features

for the generated video sequence and the ground truth se-
quence and calculate the DTW distance between these two
sequences in the feature space. Lower the I-DTW score,
better the generated video since it is closer to the ground
truth in the feature space learned by the inception network.
Our method significantly outperforms the baselines on these
metrics, as shown in Table 1.

4.2. Ablations

We perform a detailed ablation analysis to measure the
usefulness of various components of our model.

Importance of layout generation. The layout generation
step is essential to our model for generating a good video,
and we argue that pose alone is not sufficient. Figure 3
shows the importance of object locations and poses in pre-
dicting a video. For this experiment, we use our layout gen-
erator’s output to train a pose only to frame mapping, as
described in HVP [2]. We compare this visually against our
model’s output. Note that for the pose only model, while the
posture changes, the objects more or less remain in the same
position as the guidance frame. In Figure 3, a red bowl is
an object of interaction that changes its location over time.
However, in the pose only model, the red bowl doesn’t move
at all.



Table 2: Quantitative evaluation of the importance of vari-
ous modules in our model. Each row is a model trained with
different loss functions indicated in the columns.

Lpix Lfeat
Frame
GAN

Object
GAN

Video
GAN

FID(↓) I-DTW(↓) mAP(↑)

HORN
Models
(ours)

X X - - - 49.05 12.93 53.54
X X X - - 40.44 10.75 57.21
X X X X - 38.30 10.64 58.67
X X X X X 35.83 10.52 59.04

Table 3: Results on Bimanual dataset. ++ implies improved
baselines for HoI-GAN and MoCoGAN respectively. Ab1,
Ab2 and Ab3 are architecture ablations of our model with-
out relational reasoning, without prior layouts and condi-
tioning on previous generated frame instead of the first
frame respectively. SSIM, PSNR and LPIPs are average
values.

FID mAP I-DTW SSIM PSNR LPIPS

HoI-GAN++ 210.42 7.28 13.25 0.74 18.47 0.78
MoCoGAN++ 181.29 7.69 14.92 0.67 16.81 0.73

Ab1 65.73 55.46 11.38 0.80 17.99 0.83
Ab2 42.97 58.28 10.19 0.81 18.60 0.86
Ab3 140.80 34.47 14.69 0.67 15.75 0.69

Ours 35.82 59.04 10.52 0.81 18.61 0.86

Similarly, for the second example of “screwing a hard-
drive”, the objects are not predicted by the pose only model.
In contrast, our model can capture both pose and objects
evolution over time. To quantitatively evaluate the layout
generation step, we compare our method with HVP by com-
puting the FID, I-DTW, and mAP metrics, as shown in Ta-
ble 1. Our method outperforms HVP on all the three met-
rics that confirm that pose alone is not sufficient to generate
high-quality videos. The proposed way of predicting the
entire layout sequence is vital for generating high-quality
videos.

Importance of various loss functions. The success of our
layout-to-frame generation step is due to the proposed dis-
criminator losses such as Frame-GAN, Object-GAN, and
Video-GAN. We evaluate each of these loss functions’ use-
fulness and contribution in Table 2 by training the models
in different configurations. First, we train the model without
any discriminator losses (no GAN). For the next two mod-
els, we train one with Frame-GAN and the other with Frame
and Object GANs. Finally, we train a model with all the loss
functions. We observe from Table 2 that Frame GAN sig-
nificantly improves the frames’ visual quality, which helps
synthesize better objects (we can see that mAP increases by
4% with the introduction of frame GAN). Object and Video
GANs have moderate contributions where Object GAN im-
proves the mAP by 1.5%, and video gan improves it by
0.4%.

Architecture ablation analysis. We evaluate the effec-
tiveness of the proposed architecture by training models in
different configurations such as without relational reason-
ing (Ab1), without prior layout for video generation (Ab2)
and conditioning the layout generator on previous gener-
ated frame instead of the first frame (Ab3). We also com-
pare these models with improved baselines where they are
trained by augmenting the input with corresponding pose
and object information in the channel dimension. The re-
sults of these experiments are shown in Table 3. We do not
observe any significant improvements in the baselines and
our proposed method still outperforms these. Our method
shows improvements in FID and mAP without degradation
in other metrics compared to not using prior layouts.

4.3. Qualitative Analysis

This section presents a detailed qualitative analysis of
our model and its generalizations.

We visualize the layout sequence and the corresponding
video predicted by our model in Figure 4. Figure 4(a) shows
a few examples of generated object sequences. Observe that
our model learns to predict the sequences with a slight phase
shift with respect to the ground truth. Therefore, our model
is not merely trying to mimic the ground truths but is learn-
ing to generate new sequences.

Figure 4(b) is an example of “cooking” that is performed
by interacting with a bowl and a whisk. The first two rows
correspond to the ground truth sequence, and the next two
rows correspond to sequences predicted by our model. Ob-
serve that in the predicted layout sequence, as the bowl
moves up (red box), the pose of the person changes such
that the wrist gets very close to the bowl, and simultane-
ously in the pixel space, the bowl starts to move up. This
shows that our model predicts the correct layout sequence,
which is aligned temporally with the generated video.

In this experiment, the performer’s test set actions have
no overlap with the same performer’s training set actions.
Therefore, in the testing phase, the performer’s target action
is a novel action for this performer as it was not part of
the training set. Our qualitative results show that the model
can successfully generate the video by learning to transfer
the action to the test set performer. This validates that our
model can generalize well to new performers.

4.4. Visualization on UMD-HOI Dataset

Figure 5, shows a few examples of the generated videos
using the UMD-HoI dataset. Figure 5(a) is an example of
a “speaking in a telephone action” performed by an out of
sample performer. The model has never seen this performer
during training. We observe that our model is able to gen-
eralize well to new people while faithfully generating the
target video. Figure 5(b, c) shows examples of generated
videos by changing an object’s target action. In these ex-



Figure 4: Qualitative results on Bimanual dataset.

Figure 5: Qualitative results and generalization study on UMD-HOI dataset

amples we ask the model to perform: 1) pouring from a
cup and 2) speaking with a cup actions. We observe that
the model is able to reasonably generate the videos of new
target actions with the objects.

5. Conclusion
We presented a novel hierarchical video prediction

model for human-object interactions by disentangling the
video prediction into two stages. The first stage involves
predicting a layout sequence, which is a combination of
pose and object sequences. Since the spatio-temporal mo-
tion of poses and objects is highly correlated, a relational
reasoning module is learned to model their interactions. Fi-

nally, in the second stage, a layout sequence to video map-
ping is learned to generate high-fidelity videos. We pre-
sented an extensive evaluation of our method to show that
the model can learn novel interactions with objects.
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