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1. Additional Training Details

Creating object maps. The output of the relational lay-
out generation phase (i.e, stage 1) is a sequence of ob-
jects and poses. The pose outputs are 2D maps of shape
128× 128×Nkp for each timestep. Whereas the object
outputs are 1D boxes of shape 1× 4 for each box at each
timestep. After the first stage, the objects are converted into
2D maps before using them as inputs in the second stage
for video generation. We do this by first initializing a tensor
of shape 128× 128× do with zeros. Next, each object is
mapped into this tensor such that the channel corresponding
to its class is set to 1 in the region occupied by the bound-
ing box. This operation is performed for all the objects to
obtain the 2D mapping of the objects per time step.
Additional architecture details. The pose encoder is used
to encode the pose before using it as an input to the RNN. It
is a convolutional encoder with 8 initial filters. Filter size is
doubled after every convolutional layer. The final layer is a
fully connected layer with 64 output dimensions. Similarly,
the box is encoded before using it as an input to the RNN.
The box encoder is a two layer multilayer perceptron with
8 and 16 as output dimensions. The pose decoder is a con-
volutional decoder with 256 filters. The number of filters
gets halved after every convolutional layer. For the second
stage of video generation, we use a pix2pixHD architecture
with 24 filters. For all the discriminators, we use spectral
normalization and 64 filters in the first convolutional layer.

2. Datasets and Pre-processing

We used two datasets to evaluate our approach: 1) UMD-
HOI [1] dataset and 2) Bimanual dataset [2]. Additional
details about dataset collection and preprocessing are pre-
sented below.
UMD-HOI dataset. UMD-HOI dataset has a total of 64
videos with actions performed by ten subjects performing
six interactions with four objects. We fully annotate this
dataset by labeling the boxes around the objects in every
frame. Note that we only annotate the object of interaction
since the other objects are stationary in an action. To obtain
the keypoints for every frame, we used posenet [3]. Since
the dataset size is small, in order to avoid overfitting we do
data augmentation. Firstly, the video is resized spatially to
140× 140 and then randomly cropped to 128×128. Next, it
is randomly flipped from left to right. Finally, the first frame
of the video sample is randomly chosen from the first 12
frames (i.e, from the first 0.5 sec) and then the subsequent
frames are uniformly sampled to a fixed sequence length of
16. Even though the original dataset size is small, we ob-
serve that these data augmentation techniques greatly help
in training the video generator. Specifically, the random
flipping from left to right helps in making it more robust
to the hand (left or right) used for performing the action and
the random crop helps in learning a better pose sequence
generator. The dataset is divided into train and val splits.
The train split contains 50 videos and the val split contains
14 videos. In order to show generalization to new subjects,
one particular subject is held out of training. The training
and validation videos are randomly chosen.
Bimanual dataset. The Bimanual dataset contains a total
of 540 videos with actions performed by 6 subjects where
4 of them are male and 2 of them are female. It has an
overall 12 objects and 9 tasks. The tasks in this dataset in-
volve interactions with multiple objects over time. For ex-
ample, the task of cooking with bowls involves picking up
a whisk, mixing in the bowl, poring from another bowl, etc.
The authors of the dataset have provided with the extracted
bounding boxes using YOLO-v3 [4]. We selected 6 tasks
and computed the tracklets for each object in the video us-



ing two heuristics: 1) IoU and 2) similarity score based on
the color histogram. Data augmentation is done similarly
to the UMD-HOI dataset. The dataset is divided into train-
ing and validation splits. The training has 300 videos and
validation has 120. The data is split in a way that two ran-
dom actions performed by every subject are held out from
training and are included in the validation set.

3. Qualitative Results
3.1. Object sequence visualization

In Figure 1 we visualize the outputs of our object RNN
on test samples with the model trained on Bimanual dataset.
Under this setting, for every performer, the actions per-
formed in the training set have no overlap with the actions
performed in the test set. That is, a user will never perform
the same action in train and test splits. We do this to show
that our model can generalize well to new actions. For ev-
ery example in Figure 1, the first row is the ground truth
sequence of objects and the second row is the predict se-
quence.

We observe various properties from Figure 1. Firstly we
see that the relative positions of various objects are very
similar to that of ground truth sequences. Note that in all
the examples multiple objects evolve over time such as in
example 4 the green and blue objects come together and
then the blue object goes up and comes down. This is an ex-
ample of pouring from a bottle and drinking. Our generated
sequence is faithfully able to predict the relative configura-
tions of the boxes per frame and overtime. Also, note that
our model does not simply mimic the ground truth. It learns
to predict the sequence at different speeds. For example, in
1 and 2 we see that the speeds are more or less the same
but in examples 3, 4 and 5 our model predicts actions at a
slightly slower speed than the ground truth and hence the
box sequence is shifted in time.

3.2. Failure Modes

Figure 2 shows a few failure modes of our model. The
preprocessing method used to generate pose and object se-
quences can sometimes be noisy as shown in Figure 2(a).
Our layout generator is successfully able to learn to recover
from noisy labels and predict smooth pose sequences. An-
other well-known issue with video prediction problems is
missing object permanence sometimes. In Figure 2(b), the
predicted video contains two cups, one that stays stationary
on the table and the other that is used to perform the ac-
tion. This is a side effect of the optimization algorithm that
tries to propagate most of the information from the guid-
ance frame to all the frames and at the same time tries to
perform the desired action with the object. Human beings
are known to learn object permanence at a very young age,
at about 4 to 7 months, and is a very important property to

model. This is an interesting direction for future research.

3.3. Additional qualitative results on Bimanual and
HoI datasets

We present additional qualitative results on Bimanual
dataset in Figures 3, 4, 5, 6 and UMD-HOI dataset in
Figures 7, 8. We also show a few example videos gener-
ated by our model in Figure 9.
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Figure 1: Output of object RNN as compared to ground truth sequences for tasks : cooking with bowls (1,3,5) and pouring
and drinking (2,4)

Figure 2: Failure Modes



Figure 3: Example visualizations of the task “sawing” on Bimanual dataset.

Figure 4: Example visualizations of the task “hammering” on Bimanual dataset.



Figure 5: Example visualizations of the task “screwing a hard drive” on Bimanual dataset.

Figure 6: Example visualizations of the task “drinking” on Bimanual dataset.



Figure 7: Example visualizations of various tasks on UMD-HOI Dataset.



Figure 8: Example visualizations of various tasks on UMD-HOI Dataset.

Figure 9: Examples of videos generated by our model.
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